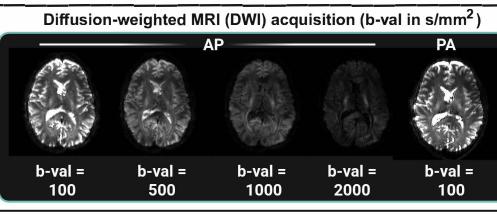

### Punching Through Clearance: Unveiling Glymphatic Dysfunction in Elite Boxers using Diffusion Kurtosis Imaging within Brain Perivascular Spaces


Evgenios N. Kornaropoulos<sup>1,2,3</sup>, Nagesh C. Shanbhag<sup>4,5</sup>, Ali Al-Husseini<sup>6</sup>, Roberto Duarte Coelho<sup>7</sup>, Guiseppe Barisano<sup>8</sup>, Kilian Hett<sup>9</sup>, Anna Gard<sup>6</sup>, Leonard B. Jung<sup>10</sup>, Joanna Wardlaw<sup>7</sup>, Karin Markenroth Bloch<sup>11</sup>, Markus Nilsson<sup>1</sup>, Virginia F. J. Newcombe<sup>12</sup>, David K. Menon<sup>12</sup>, Niklas Marklund<sup>6</sup>
<sup>1</sup> Department of Clinical Sciences, Diagnostic Radiology, Medical Faculty, Lund University, 221 85 Lund, Sweden, <sup>2</sup> Aix-Marseille Univ, CNRS, CRMBM, Marseille, France, <sup>3</sup> CRC Human Imaging, GIGA Department, University of Liegel, Liege, Belgium, <sup>4</sup> Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden, <sup>5</sup> Meditech Foundation, Cali, 760001, Colombia, <sup>6</sup> Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skane University Hospital, 221 85 Lund, Sweden, <sup>7</sup> Department of Neuroradiology, University of Edinburgh, Edinburgh, Scotland, <sup>8</sup> Department of Neurosurgery, Stanford University, CA, USA, <sup>9</sup> Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA, <sup>10</sup> Department of Neurosurgery, Ludwig-Maximilians-Universität Munich, Germany, <sup>11</sup> Department of Clinical Sciences Lund, Lund University Bioimaging Center, Lund University, Lund, Sweden, <sup>12</sup> Division of Anaesthesia and PACE, Department of Medicine, University of Cambridge, Cambridge, United Kingdom

The author has chosen not to publish their abstract

# Punching Through Clearance: Unveiling Glymphatic Dysfunction in Elite Boxers using Diffusion Kurtosis Imaging within Brain Perivascular Spaces







### Proposed pipeline

Elite boxers (RHI)

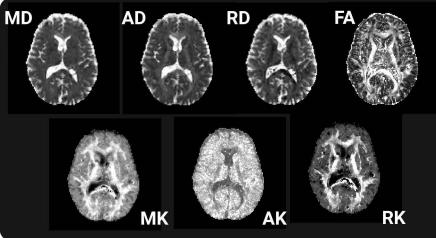
(24.7 +/- 1.7 years, 18M/3F)

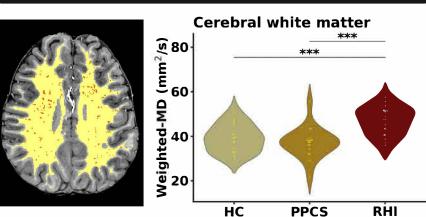
- Correct for bias field on T1w, FLAIR
- Co-register FLAIR-to-T1w
- Parcellate the whole-brain on T1w
- Compute a white matter hyperintensities (WMH)
   mask
- Process DKI (denoising, Gibbs-ringing artefact correction, motion and eddy currents correction, susceptibility-induced distortions correction)
- Fit a DKI model & then affinely co-register FA-to T1w
- Segment PVS using the RORPO method at the cerebral white matter (CWM), the basal ganglia, and the brainstem
- the the VM), the BG
  Brainsten
- Compute PVS-weighted metrics
- e.g.in the case of MD within CWM:

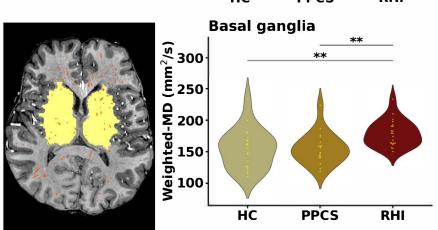
#### PVSvol-weighted MD = MD × (PVSvol ÷ CWMvol)

Segment the parasagittal dura (PSD)




## Key findings on elite boxers (RHI) compared to HC and PPCS:


- Significantly reduced tissue volumetry:
  - Total intracranial ROI
  - Grey matter
  - Brainstem
  - Cerebral white matter
- Significantly elevated PVS fraction in:
  - Cerebral white matter
  - Basal ganglia
- <u>Significantly elevated PVS-Weighted diffusion metrics</u> (MD, AD, RD, MK, AK, RK) in:
  - Cerebral white matter
  - Basal ganglia
  - Brainstem


**Conclusion:** Elite boxers exhibit impaired PVS solute diffusivity, revealing disrupted glymphatic clearance pathways linked to RHI

